h1_key

當(dāng)前位置:首頁 >新聞資訊 > 技術(shù)文章>英飛凌>功率MOSFET電流額定值和熱設(shè)計(jì)
功率MOSFET電流額定值和熱設(shè)計(jì)
2022-11-30 643次

  1、什么是電流額定值?

  電氣設(shè)備(如斷路器、電機(jī)或變壓器)的電流額定值是指設(shè)備本身在某一電流下達(dá)到的溫度可能損害設(shè)備穩(wěn)定性和功能時(shí)的電流值。雖然制造商知道設(shè)備材料的溫度限制,但他不知道使用設(shè)備時(shí)的環(huán)境溫度。因此,他不得不假設(shè)環(huán)境溫度。這有兩個(gè)后果:

  每個(gè)電流額定值都與環(huán)境溫度相關(guān)(環(huán)境,散熱器,殼)。不考慮環(huán)境溫度而討論電流額定值是無意義的。

  用來定義電流額定值的溫度可能與實(shí)際工作條件有關(guān),也可能無關(guān)。如果有關(guān),電流額定值可用于指示實(shí)際應(yīng)用中器件的電流能力。如果器件的額定值是在典型工況時(shí)不會遇到溫度下定義的,它就無法提供應(yīng)用中實(shí)際器件能力的信息。該值只能用來比較相似器件在相同溫度時(shí)的電流額定值。

  電氣設(shè)備(如電機(jī),斷路器)的電流額定值由各種協(xié)議和法規(guī)規(guī)定。其它器件,如變壓器,電阻和半導(dǎo)體的電流額定值都在數(shù)據(jù)手冊中進(jìn)行了定義。因此,用戶必須核實(shí)器件能否在以下條件運(yùn)行:

  應(yīng)用中出現(xiàn)最大電流時(shí)

  最大環(huán)境溫度時(shí)

  未超出數(shù)據(jù)手冊中規(guī)定的最高結(jié)溫

  為了核實(shí)這3個(gè)要素,用戶必須進(jìn)行“熱設(shè)計(jì)”。這可以是一項(xiàng)簡單的工作,或者是通過復(fù)雜的有限元分析得出結(jié)論。

  此時(shí),精明的讀者會意識到當(dāng)他做熱設(shè)計(jì)時(shí),就能找出實(shí)際應(yīng)用中器件的電流額定值,而不需要制造商所提供的電流額定值。制造商提供的各個(gè)電流額定值僅用于表明器件的能力,并縮小選擇范圍。


  2、功率MOSFET電流額定值

  熱設(shè)計(jì)對功率MOSFET非常重要,原因如下:

  功率MOSFET的工作電流密度極大,且結(jié)溫和環(huán)境溫度相差極大


  功率MOSFET的熱質(zhì)量極小,且會在幾毫秒之內(nèi)進(jìn)入熱失控

  因此,功率MOSFET必須進(jìn)行散熱處理,且設(shè)計(jì)者須負(fù)責(zé)選擇散熱器或其它冷卻方法,即進(jìn)行“熱設(shè)計(jì)”。


  3、連續(xù)直流電流額定值

  典型的功率MOSFET數(shù)據(jù)手冊包含了一個(gè)或多個(gè)“連續(xù)直流電流額定值”,通常由曲線圖補(bǔ)充,如圖1所示。這是基于以下假設(shè):

  功率MOSFET正在導(dǎo)通固定量的電流(無開關(guān)損耗)

  在結(jié)里產(chǎn)生的熱量流入到無限散熱器

  熱源和殼的溫度是恒定不變的。熱源(結(jié))的溫度為最大值



  ·


  圖 1.在器件封裝所允許的限值范圍內(nèi)時(shí),連續(xù)直流電流額定值與殼溫之間的函數(shù)關(guān)系(IRLS3036PBF)



  在以上假設(shè)下,計(jì)算熱值的方程式可簡化為:

  ?TJC = Pd x RthJ-C

  由于器件制造商事先不知道使用器件時(shí)的熱環(huán)境,因此他將管殼溫度用作參考點(diǎn)得出了電流額定值。

  然而,在實(shí)際應(yīng)用中,需考慮整個(gè)熱系統(tǒng),因此以上簡化方程式轉(zhuǎn)變?yōu)椋?/span>

  TJ = TA + (RthJ-C + RthC-S + RthS-A) PAV

  其中:

  TJ= 結(jié)溫

  TA= 環(huán)境溫度

  RthJ-C= 結(jié)到殼熱阻抗

  RthC-S = 殼到散熱器熱阻抗

  RthS-A= 散熱器到環(huán)境熱阻抗

  PAV= 平均功率耗散

  通常,可利用以上公式計(jì)算出半導(dǎo)體的連續(xù)直流電流額定值。MOSFET有一個(gè)獨(dú)特的特性:電流和功率耗散呈平方關(guān)系。因此,通過下列公式就可計(jì)算出電流額定值:







  其中RDS(on)是在額定TJmax時(shí)的導(dǎo)通電阻。RthJC 是內(nèi)部結(jié)到殼熱阻抗最大值,Tc是管殼溫度。其它功率器件的電流和功率耗散是非線性的關(guān)系,因此必須通過迭代過程確定其電流額定值。

  在大多數(shù)應(yīng)用中,功率MOSFET的管殼溫度高于80oC。因此,功率器件的可用連續(xù)直流電流適用于80°和110°C之間的任意管殼溫度。這樣,管殼溫度和環(huán)境溫度之間有了足夠的差距,散熱器就能處理熱傳遞。25°C電流額定值是第一代雙極晶體管JEDEC遺留下來的標(biāo)準(zhǔn)值。

  低壓MOSFET技術(shù)的進(jìn)步降低了傳導(dǎo)損耗,使得封裝成為連續(xù)直流電流額定值的限制因素。圖1描述了這一點(diǎn)。


  4、開關(guān)模式操作中的電流能力

  前述討論的連續(xù)直流電流額定值只作為一個(gè)比較基準(zhǔn),給設(shè)計(jì)者帶來的直接用途很有限,原因如下:

  功率晶體管一般運(yùn)行在開關(guān)模式,其占空比大大低于100%。設(shè)計(jì)者真正感興趣的是在實(shí)際“開關(guān)”操作情況下的載流能力

  在開關(guān)模式下操作時(shí),功率晶體管產(chǎn)生開關(guān)損耗。必須通過計(jì)算得出這些開關(guān)損耗,并將其添加到傳導(dǎo)損耗

  開關(guān)模式下功率器件的選擇取決于浪涌要求,而非連續(xù)直流電流額定值和載流能力

  只要第三節(jié)描述的第2種情況和第3種情況有效,我們就可以使用基本的熱值方程式計(jì)算出結(jié)溫。此時(shí)假定我們已知系統(tǒng)的功率耗散和熱阻抗。

  通常將功率耗散分成2部分:傳導(dǎo)損耗和開關(guān)損耗。功率MOSFET里的傳導(dǎo)損耗計(jì)算方法為Irms2x RDS(on)。不同波形的RMS內(nèi)容可在附錄中找到。開關(guān)損耗可通過開關(guān)波形,柵極電荷或分析方法計(jì)算出。IGBT的傳導(dǎo)損耗和開關(guān)損耗計(jì)算方法更為復(fù)雜。

  第3節(jié)基本方程式中的功率指“平均”功率,且只要操作頻率相對于系統(tǒng)熱慣量高,結(jié)果就有效。隨著操作頻率上升,結(jié)的熱質(zhì)量消除瞬時(shí)溫度波動,且結(jié)更多地對平均功率損耗做出響應(yīng),而不是峰值功率損耗。頻率高于幾千赫茲,且占空比大于20%時(shí),逐周期溫度波動縮小,且峰值結(jié)溫上升等于平均功率耗散乘以DC結(jié)至殼熱阻抗,誤差在一個(gè)或兩個(gè)百分點(diǎn)內(nèi)。

  當(dāng)操作頻率很低時(shí)(幾十赫茲),必須計(jì)算溫度紋波。下面將要討論的瞬態(tài)熱阻抗曲線描述了在低頻操作時(shí)如何計(jì)算溫度紋波。


  5、脈沖條件下的結(jié)溫

  在脈沖條件下,第3節(jié)描述的3個(gè)假設(shè)不再有效:

  器件在穩(wěn)態(tài)模式下不再導(dǎo)通電流

  結(jié)里產(chǎn)生的熱量一部分到系統(tǒng)熱質(zhì)量,一部分到環(huán)境

  熱系統(tǒng)的各個(gè)點(diǎn)處的溫度在浪涌期間上升。

  計(jì)算結(jié)溫的正確方法需考慮熱流的三維性質(zhì),如圖2所示。通常通過有限元分析完成它。由于導(dǎo)通電阻和溫度成函數(shù)關(guān)系,功率耗散會隨著時(shí)間增加,且在分析中必須考慮采用合理的功率MOSFET電氣模型。




  圖 2.由于熱量流向三個(gè)維度,因此“結(jié)溫”只是一個(gè)粗略估算值。結(jié)和熱系統(tǒng)剩余部分的不同點(diǎn)溫度不同。


  在很多應(yīng)用中,結(jié)溫估算值就已足夠。此時(shí),有兩種方法可以得出該估算值,具體如下:


  瞬態(tài)熱阻抗

  瞬態(tài)熱阻抗(或者更準(zhǔn)確地說,叫熱響應(yīng)曲線)如圖3所示,且在所有的數(shù)據(jù)手冊中可以查看。




  圖3. 瞬態(tài)熱阻抗曲線。請注意這是SPICE仿真的熱參數(shù)(IRLS3036PBF)。


  該曲線提供了給定時(shí)段內(nèi)(x軸)浪涌的熱響應(yīng)系數(shù)(y軸)。如上圖所示,熱響應(yīng)系數(shù)(或熱阻抗)與導(dǎo)通時(shí)間t內(nèi)的功率耗散(即導(dǎo)通脈沖內(nèi)的功率,而非整個(gè)周期內(nèi)的平均功率)相乘得出重復(fù)性結(jié)到殼溫峰值的上升值。功率耗散則可通過浪涌期間器件兩端的電壓和電流計(jì)算出。

  請注意對于長脈沖(在圖3中約10ms),熱響應(yīng)阻抗相等。

  在有些數(shù)據(jù)手冊中,熱響應(yīng)系數(shù)歸一化為1。這意味著該系數(shù)需進(jìn)一步與數(shù)據(jù)手冊里的熱阻抗相乘。

  瞬態(tài)熱響應(yīng)曲線假定恒定的管殼溫度。這通常對短于1到5ms的脈沖有效,具體脈沖長度取決于封裝的熱質(zhì)量。對于更長的浪涌脈沖,殼溫開始上升,結(jié)果就不是那么準(zhǔn)確了。在空氣中或PQFN封裝下操作,殼溫最多上升1毫秒,該曲線不提供有用的信息。在這些情況下,必須采用有限元分析模擬整個(gè)熱系統(tǒng)。

  對于大多數(shù)應(yīng)用(短脈沖和顯著熱質(zhì)量),如第3節(jié)描述,由于TC主要取決于平均功率耗散,因此它是可計(jì)算的。在穩(wěn)態(tài)工作條件下,將溫度紋波疊加到平均管殼溫度,得到峰值結(jié)溫絕對值。

  當(dāng)結(jié)溫里的紋波很明顯時(shí),瞬態(tài)熱阻抗曲線可用于計(jì)算重復(fù)率極低的功率脈沖的峰值溫度。合理的熱響應(yīng)發(fā)生在x軸上的脈沖寬度與適當(dāng)占空比曲線交叉處。如上所述,熱響應(yīng)系數(shù)必須與脈沖期間的功率耗散相乘,然后再疊加到管殼溫度。


  附錄 確定波形ID的均方根值(RMS)

  MOSFET傳導(dǎo)損耗與RMS漏電流的平方成比例。電流波形很少是簡單的正弦曲線或矩形,這可能在計(jì)算IRMS的值時(shí)產(chǎn)生一些問題。對于那些可被分割成若干段,且能分段計(jì)算出其RMS值的波形,可通過下列等式和步驟確定它們的IRMS。

  通過下列公式可計(jì)算出任意波形的RMS值



  下圖顯示了多個(gè)簡單的波形,以及代入上面的等式可計(jì)算出IRMS的公式。

  如果將下面各個(gè)圖中的波形進(jìn)行組合可以得出大致令人滿意的實(shí)際波形,則可通過下列公式計(jì)算出波形的RMS值:



  兩個(gè)波形不同時(shí)等于0時(shí),以上內(nèi)容成立。



  • 英飛凌的EiceDRIVER?高低邊柵極驅(qū)動器IR2181STRPBF
  • 其中,英飛凌的EiceDRIVER? 600 V 高低邊柵極驅(qū)動器 IC(IR2181STRPBF),具有典型的 1.9 A 拉電流和 2.3 A 灌電流,具有更高的帶載能力,可驅(qū)動 MOSFET和IGBT,為產(chǎn)品從開發(fā)設(shè)計(jì)到最終應(yīng)用全面保駕護(hù)航。
    2023-12-27 257次
  • 英飛凌門極驅(qū)動正壓對功率半導(dǎo)體性能影響
  • 對于半導(dǎo)體功率器件來說,門極電壓的取值對器件特性影響很大。以前曾經(jīng)聊過門極負(fù)壓對器件開關(guān)特性的影響,而今天我們來一起看看門極正電壓對器件的影響。文章將會從導(dǎo)通損耗,開關(guān)損耗和短路性能來分別討論。
    2023-12-22 254次
  • 英飛凌160V MOTIX?三相柵極驅(qū)動器IC
  • MOTIX?三相柵極驅(qū)動器集成電路6ED2742S01Q是英飛凌MOTIX?品牌的新成員,該品牌通過可擴(kuò)展的產(chǎn)品組合提供低壓電機(jī)控制解決方案。它是一款160V絕緣體上硅(SOI)柵極驅(qū)動器IC,采用5x5 mm2 QFN-32封裝,帶有熱效率高的裸露功率焊盤,并集成了電源管理單元(PMU)。
    2023-07-21 324次
  • 英飛凌6.5A,2300V單通道隔離式柵極驅(qū)動器評估板
  • 英飛凌6.5A,2300V單通道隔離式柵極驅(qū)動器評估板(配SiC MOSFET)。EVAL-1ED3142MX12F-SIC采用半橋電路,用兩個(gè)柵極驅(qū)動IC?1ED3142MU12F來驅(qū)動IGBT、MOSFET和SiC MOSFET等功率開關(guān)。
    2023-06-28 382次
  • 英飛凌的 CoolSiC? XHP? 2 高功率模塊
  • 英飛凌科技股份公司為了滿足上述需求,在其 CoolSiC?功率模塊產(chǎn)品組合中增加了兩款新產(chǎn)品:FF2000UXTR33T2M1和 FF2600UXTR33T2M1。這些功率模塊采用新開發(fā)的3.3kV CoolSiC? MOSFET和英飛凌的.XT互連技術(shù),封裝為XHP? 2,專門針對牽引應(yīng)用量身定制。
    2023-06-28 347次

    萬聯(lián)芯微信公眾號

    元器件現(xiàn)貨+BOM配單+PCBA制造平臺
    關(guān)注公眾號,優(yōu)惠活動早知道!
    10s
    溫馨提示:
    訂單商品問題請移至我的售后服務(wù)提交售后申請,其他需投訴問題可移至我的投訴提交,我們將在第一時(shí)間給您答復(fù)
    返回頂部