一、充電器基礎知識
電池充電系統(tǒng)的關鍵元件包括充電器本身,以及報告電池指標的電量計,例如電池的充電狀態(tài)(SOC)、剩余電量使用時間和電池充滿所需時間。電量計可以集成在主機端,或者集成在電池包中(參見圖1)。
圖1. 電池電量計可以集成在主機端,或集成在電池包中
集成在電池包中時,電量計需要使用非易失性存儲器來存儲電池信息。電源路徑中的MOSFET監(jiān)測充電/放電電流,保護電池免于遭受危險狀況。MAX17330 是ADI公司提供的電池電量計,內置保護電路和電池充電器功能(參見圖2)。
圖2. 包含充電MOSFET調節(jié)功能的電量計框圖
圖3. 高壓/高電流快速充電系統(tǒng)框圖
充電MOSFET可以精細調節(jié),以實現(xiàn)線性充電器,在充電電源限制為5 V,充電電流在500 mA范圍內時,該器件可以獨立使用。由于鋰電池在99%充電曲線中的充電電壓都超過3.6V,因此功耗受到限制。
在充電器前面連接降壓轉換器來調節(jié)其輸出電壓,這樣就可使用高壓充電電源和高充電電流(參見圖3)。同時還可以充分減少壓降,從而降低充電MOSFET的功耗(參見圖4)。
圖4. 使用降壓轉換器來調節(jié)輸出電壓,以高效實現(xiàn)10 A充電電流。圖中所示的是MAX20743降壓轉換器,VIN = 12 V
在電池包中集成電量計會使電池變得智能,能夠用于先進充電場景,實現(xiàn)先進充電功能。例如,電量計可在其非易失性存儲器中存儲適合電池包中電池的充電曲線參數(shù)。因此無需通過主機微控制器單元(MCU)充電。現(xiàn)在,主機MCU僅需管理來自電池包的ALRT信號,根據(jù)收到的警報類型增大/降低降壓轉換器的輸出電壓。
CP: 熱限制 → 降低電壓。
CT: MOSFET溫度限制 → 降低電壓。
Dropout: →增大電壓。
CP是一種標志,當流經(jīng)保護MOSFET的電流影響散熱性能時,該標志置位。CT是一種標志,在MOSFET溫度過高時置位。熱限制和MOSFET限制設置使用nChgCfg1寄存器組進行配置。
可編程降壓轉換器(例如 MAX20743 )使用PMBus®來精細調節(jié)輸出電流。降壓轉換器中的集成式MOSFET支持高達10 A的充電電流。此外,由于PMBus使用I2C作為其物理層,可以使用單個I2C總線來管理降壓轉換器和電量計。
以下示例展示一種為單個3.6 V鋰電池充電的方式。圖5顯示充電系統(tǒng)中電壓和電流的時域形狀。具體來說,該圖顯示了電池電壓、電池電流和降壓轉換器的輸出電壓。
圖5. 單個電池快速給3.6 V鋰電池充電
可以看出,降壓轉換器的輸出(VPCK)設置為高于電池電壓50 mV。該輸出電壓會持續(xù)增大,以免造成壓差,且盡可能降低總功耗。
二、電池安全管理
由于快速充電期間的電流很高,OEM必須要確保安全充電。因此,作為整個電池管理的一部分,智能快速充電器必須能夠監(jiān)測多個重要參數(shù)。例如,在根據(jù)電池制造商規(guī)格和建議監(jiān)測電池溫度和環(huán)境/室溫的情況下,快速充電器可以確定何時降低充電電流和/或降低端電極電壓,以確保電池安全,延長電池的使用壽命。
可以根據(jù)溫度調節(jié)電壓和電流,以符合六區(qū)JEITA溫度設置要求(參見圖6),且基于電池電壓進行三區(qū)步進充電。
圖6. 6區(qū)JEITA溫度范圍
使用步進充電曲線,根據(jù)電池電壓改變充電電流,可以進一步延長電池的使用壽命。圖7顯示使用3個充電電壓和3個相應的充電電流的步進充電曲線??梢酝ㄟ^狀態(tài)機來管理各級之間的轉換(參見圖7)。
圖7. 步進充電曲線,使用狀態(tài)機來管理各級之間的轉換
注意,電流、電壓和溫度都是相互關聯(lián)的(參見表1和表2)。
三、并聯(lián)充電
多電池并聯(lián)充電需要額外管理。例如,當兩個電池的電壓相差超過400 mV時,充電器必須防止出現(xiàn)交叉充電。只有當最低電池電量太低,無法支持系統(tǒng)負載時,才容許在有限的時間里進行交叉充電(參見表3和圖8)。
表1. 充電電流,支持步進充電和JEITA
表2. 充電電壓,支持步進充電和JEITA
表3. FET邏輯管理
圖8. 為了防止交叉充電,當電池ΔV >400 mV,會阻止電壓更高的電池放電
結論
將充電和電量計功能從主機端移動到電池包一端,可以單獨控制1S2P配置中的每個電池。因此不需要由主機MCU完全管理充電,而是智能充電器本身根據(jù)優(yōu)化充電曲線來管理其輸出。由于主機端的管理只是管理電量計生成的ALRT信號,所以系統(tǒng)能夠輕松采用不同的電池包。
必要時,智能充電器還可以阻止充電和放電,以防出現(xiàn)交叉充電。這種方法無需考慮電池不匹配問題,提高了典型快速充電系統(tǒng)的靈活性。借助快速電池充電技術,除了簡化設計和整個充電流程之外,OEM還可以充分降低功耗,確保廣泛應用的充電和放電安全,并改善用戶體驗。